

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

Table Of Contents

Introduction to ABAP 7.4 2

New Commands in OpenSQL for ABAP 7.4 2

Declaring and Creating Variables in ABAP 7.4 8

ABAP 7.4 Data Type Declarations 8

Using The “NEW” Constructor Operator in ABAP 7.4 9

Using The “VALUE” Constructor Operator in ABAP 7.4 10

Using the “FOR” Iteration Expression in ABAP 7.4 11

Working with Strings in ABAP 7.4 14

Using the Chaining Operator in ABAP 7.4 14

Using String Templates in ABAP 7.4 14

Using Embedded Expressions in ABAP 7.2 and ABAP 7.4 15

Calling Methods and Functions in ABAP 7.4 18

Using Method Chaining in ABAP 7.4 18

Avoiding TYPE MISMATCH Errors in ABAP 7.4 19

Constructor Operators in ABAP 7.4 20

Conditional Logic in ABAP 7.4 21

Using COND as a Replacement for IF/ELSE in ABAP 7.4 21

Using SWITCH a Replacement for CASE in ABAP 7.4 22

Using Predictive Method Calls in ABAP 7.4 24

Using the New Boolean Function XSDBOOL in ABAP 7.4 25

Using Secondary Keys to Access Internal Tables in ABAP 7.4 26

Declaring Table Work Areas in ABAP 7.4 27

Table Expressions in ABAP 7.4 28

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

CORRESPONDING Constructor Operator in ABAP 7.4 29

MOVE-CORRESPONDING for Internal Tables 30

Using The Constructor Operator FILTER in ABAP 7.4 30

Predicate Functions for Internal Tables in ABAP 7.4 31

Search Helps in ABAP 7.4 32

Here is the video I promised. 37

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

Introduction to ABAP 7.4

The technical innovations in SAP are coming in rapid succession. It should
therefore not come as a surprise that even the ABAP language is
undergoing transformations. A host of features have been introduced in the
ABAP 7.40 release, and with the upcoming 7.50 release even more new
constructs can be added to your ABAP tool-kit. While nothing has been
taken away, this is to ensure backward compatibility, the rate of change
continues to accelerate. To get a clear technical understanding of ABAP 7.4, I
recommend you read the following links…

One tool I suggest you do add to your ABAP arsenal, and what this blog
series is based on, is the book ABAP® to the Future by Paul hardy. I believe
Paul has currently released a 2nd edition as well. You can �nd the book .here

This blog series, like Paul’s book, will focus on the changes that came with
version 7.4 by breaking the blog up into sections a developer would normally
be interested in, like string processing, or conditional logic…etc. Since you
and I are developers, we tend to spend a good bit of time accessing the
database when developing ABAP programs, so let’s begin this series here….

New Commands in OpenSQL for ABAP 7.4

CASE Statements In OPEN SQL Queries in ABAP 7.4

One of the new features of ABAP 7.4 is the ability to use CASE statements in
Open SQL queries. The code below shows an example of this. In this example
there is a �eld in a local structure named ERNAM, and it should be �lled with
the literals “NAME1”, “NAME2”, or “NAME3” respectively, depending on the
contents of the database �eld AUART (DocType).

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/
https://www.sap-press.com/abap-to-the-future_4161/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

DATA: ls_vbak TYPE vbak,
 ld_vbeln LIKE vbak-vbeln.

PARAMETERS: p_vbeln like vbak-vbeln.

CONSTANTS: lc_name1(5) TYPE c VALUE 'name1',
 lc_name2(5) TYPE c VALUE 'name2',
 lc_name3(5) TYPE c VALUE 'name3'.

ld_vbeln = p_vbeln.

SELECT vbeln, vbtyp,
 CASE
 WHEN auart = 'ZAMA' THEN @lc_name1
 WHEN auart = 'ZACR' THEN @lc_name2
 ELSE @lc_name3
END AS ernam
FROM vbak
WHERE vbeln = @ld_vbeln
 INTO CORRESPONDING FIELDS of @ls_vbak.
ENDSELECT.

SELECT vbeln, vbtyp,
 CASE
 WHEN auart = 'ZAMA' THEN @lc_name1
 WHEN auart = 'ZACR' THEN @lc_name2
 ELSE @lc_name3
END AS ernam
FROM vbak
WHERE vbeln = @ld_vbeln
 INTO CORRESPONDING FIELDS of @ls_vbak.
ENDSELECT.

Please make note that you have to put an @ symbol in front of your ABAP
variables (or constants) when using new features, such as CASE, in order to
let the compiler know that you are not talking about a �eld in the database.
(This is called “Escaping” the Host Variable). You also have to put commas
between the �elds you are bringing back from the database and put the
INTO statement at the end. This is a result of a new “strict” syntax check that
comes into force when the compiler notices you are using one of the new
features. In this way, SAP can still being backward compatible.

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

Why did I use this as my �rst example? Surely you have used the CASE
statement on data AFTER you have retrieved it. So what have we gained or
even done by placing the CASE inside the SELECT? Well, what the CASE
statement has allowed you to do is outsource the conditional logic to the
database, as opposed to performing the CASE on the application server.

If you are unfamiliar with coding ABAP on HANA, the paradigm shift of
pushing logic down into the SAP HANA database to be processed is new, but
can result in huge performance improvements. While this example is not
HANA speci�c, it does introduce you to the “concept of pushing code down”
to the database layer. Something in the past we have been told to avoid. The
new paradigm in ABAP is “Code-to-Data”. We will learn to create VALUE by
optimizing the backend DBMS (HANA).

Performing Calculations within SQL Statements in ABAP

7.4

Another feature that is new to release 7.4 is the ability to perform
arithmetical operations inside of SQL statements. Before 7.4 you had to
select the data �rst, then you could perform calculations on it. This is best
explained with an example. Let’s say we are selecting against table SFLIGHT.
We want all rows for United Airlines connection id 941. For each row, we will
add together the total occupied seats in Business Class and First Class, then
we will multiply that by price and store the result in �eld paymentsum of our
internal table.

DATA: lt_s�ight TYPE TABLE OF s�ight.

 CONSTANTS: lc_carrid TYPE s_carr_id VALUE 'UA',
 lc_connid TYPE s_conn_id VALUE '941'.

 SELECT carrid, connid, price, seatsocc_b, seatsocc_f,
 ((seatsocc_b + seatsocc_f)) * price AS paymentsum
 FROM s�ight
 WHERE carrid = @lc_carrid
 AND connid = @lc_connid
 INTO CORRESPONDING FIELDS of TABLE @lt_s�ight.

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

In-Line Declarations within SQL Statements in ABAP 7.4

ABAP 7.4 has removed the need to create the data declaration for an internal
table or structure. In prior versions of ABAP, if you declared a TYPE and then
suddenly wanted to retrieve an extra �eld in your SELECT, then you would
need to make the change in two places: in the TYPE de�nition and in the
SELECT statement. In ABAP 7.4, however, you can not only skip the TYPE
de�nition but the internal table declaration as well. An example of this is
shown below:

SELECT carrname AS name, carrid AS id
 FROM scarr
 INTO TABLE @DATA(result).

Look at the debugger screen shot below:

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

As you can see, the table is created at the instant the database is accessed,
and the format or ABAP TYPE of the table is taken from the types of the data
�elds you are retrieving.

This also works for structures if you are doing a SELECT on multiple database
�elds. The column name can also be in�uenced in the target internal table
using the construct. So in the example below, in the internal
table result, CARRNAME will be called NAME and CARRID will be called ID.

AS <variable>

SELECT SINGLE carrname AS name, carrid AS id
 FROM scarr
 WHERE carrid = @id
 INTO @DATA(result).

Take a look at the Debugger screen shot below:

INNER Join Column Specification in ABAP 7.4

As developers we (you) probably use Inner Joins frequently. In ABAP 7.4 we
can utilize the ASTERISK in much the same way we can use it in a SELECT *.
In the SELECT list, you can now specify all columns of a data source using the
new syntax data_source~* (see below:)

SELECT scarr~carrname, sp�i~*, scarr~url
 FROM scarr INNER JOIN sp�i ON scarr~carrid = sp�i~carrid
 INTO TABLE @DATA(result).

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Database Access

You can see that SPFLI has been added to the table RESULT. Please
remember to address the data for SPFLI you would need to code as follows…

RESULT[]-SPFLI-n data_element

Also, please, please, please… be mindful when using the asterisk. It acts just
like the wild card in SELECT * and can impact performance if you really didn’t
want all of the columns.

https://itpfed.com/new-features-in-abap-7-4-database-accessnew-features-in-abap-7-4/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Declaring and Creating Variables

Declaring and Creating Variables in ABAP

7.4

In this chapter, I’d like to introduce you to a new feature called Inline
Declarations. It’s a very simple feature, but very useful, and can make our
code base smaller and easier to understand. Inline declaration means, that
you declare your local variables as embedded in the given context, instead of
declaring them separately at the beginning of program (i.e. the TOP
INCLUDE).

ABAP 7.4 Data Type Declarations

The ABAP compiler knows what data type it wants, in fact it has to know in
order to be able to perform a syntax check, so why not let it decide the data
type of your variable and create it? So instead of declaring it yourself, let the
compiler declare it for you.. lets look at some examples.

Before ABAP 7.4

DATA: lv_vehicle TYPE string.
lv_vehicle = 'Mercedes'.

What if instead, you could code this…

With ABAP 7.4

DATA(lv_vehicle) = 'Mercedes'.

OR this…

Before ABAP 7.4

DATA: lv_rows TYPE i.
lv_rows = LINES(itab)

Becomes…

With ABAP 7.4

https://itpfed.com/features-abap-74-declaring-creating-variables/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Declaring and Creating Variables

DATA(lv_rows) = LINES(itab).

What about �eld symbols? Well For �eld symbols there is the new
declaration operator FIELD-SYMBOL(…) that you can use now. Lets look at
the 3 examples of how to use this new operator below…

With ABAP 7.4

ASSIGN ... TO FIELD-SYMBOL().

LOOP AT itab ASSIGNING FIELD-SYMBOL().
...
ENDLOOP.

READ TABLE itab ASSIGNING FIELD-SYMBOL() ...

Using The “NEW” Constructor Operator in

ABAP 7.4

With Release 7.40 ABAP supports so called constructor operators.
Constructor operators are used in constructor expressions to create a result
that can be used at operand positions. The syntax for constructor
expressions is

... operator type(...) ...

“NEW” is a constructor operator. “TYPE” is the explicit name of a data type.
Inside the parentheses speci�c parameters can be speci�ed.

So looking at some examples, for ABAP OO creating an instance …

Before ABAP 7.4

DATA lo_human TYPE REF TO class_human.
CREATE OBJECT lo_human EXPORTING NAME = 'TONY'.

With ABAP 7.4

https://itpfed.com/features-abap-74-declaring-creating-variables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-declaring-creating-variables%2F&text=Using+The+%26%238220%3BNEW%26%238221%3B+Constructor+Operator+in+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – Declaring and Creating Variables

lo_human = NEW class_human(name = ‘TONY’).

And for Data objects…

Before ABAP 7.4

DATA: lv_rows TYPE i.
lv_rows = 0.

With ABAP 7.4

lv_rows = NEW i(0).

Using The “VALUE” Constructor Operator in

ABAP 7.4

The VALUE constructor operator works similarly to the NEW Operator to
create the ITAB entries. Using the VALUE operator, the itab would be
initialized and records would be inserted. let’s look at an example, �rst we
will create an table type…

 t_itab i WITH DEFAULT KEY.TYPES TYPE STANDARD OFTABLE

Before ABAP 7.4

 itab_o t_itab.
: itab_o,

 20 itab_o,
 itab_o.

DATA TYPE
APPEND 10 TO

TO
30 TO

With ABAP 7.4

itab = t_itab .DATA() VALUE ((10) (20) (30))

OK, so let’s take a look at these inside the debugger. As you can see we
accomplished the same goal with way fewer lines of code.

https://itpfed.com/features-abap-74-declaring-creating-variables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-declaring-creating-variables%2F&text=Using+The+%26%238220%3BVALUE%26%238221%3B+Constructor+Operator+in+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – Declaring and Creating Variables

Using the “FOR” Iteration Expression in

ABAP 7.4

What is an ? Well you and I do not normally hard code
our internal table entries as shown above. This is not feasible for large tables,
and hard coding is generally frowned upon as a practice. Usually we �ll our
internal tables by reading the SAP database. We also �lled one internal table
from another, and could only do this if the columns were the same in the
source and target internal tables. So prior to ABAP 7.4 you had to add all the
lines of one table to another or do an assign as depicted below…

Iteration Expression

APPEND LINES OF lt_itab1 TO lt_itab2.
lt_itab2[] = lt_itab1[].

Now that the FOR command has been introduced in ABAP 7.4, you can
achieve this in a much easier way, and the tables can have different columns,
and you can �lter or limit what gets transferred using conditional logic with
the VALUE and FOR keywords. So what does FOR do? let’s examine the
syntax:

 FOR wa| IN itab [INDEX INTO idx] [cond]

https://itpfed.com/features-abap-74-declaring-creating-variables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-declaring-creating-variables%2F&text=Using+the+%26%238220%3BFOR%26%238221%3B+Iteration+Expression+in+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – Declaring and Creating Variables

This effectively causes a loop at itab. For each loop the row read is assigned
to a work area (wa) or �eld-symbol(). This wa or is local to the expression i.e. if
declared in a subrourine the variable wa or is a local variable of that
subroutine. Index like SY-TABIX in loop.

lets look an an example below…

Lets say we are given the following to start:

TYPES: BEGIN OF ty_ship,
 tknum TYPE tknum,
 name TYPE ernam,
 city TYPE ort01,
 route TYPE route,
 END OF ty_ship.
 TYPES: ty_ships TYPE SORTED TABLE OF ty_ship WITH UNIQUE KEY tknum.
 TYPES: ty_citys TYPE STANDARD TABLE OF ort01 WITH EMPTY KEY.

"Shipment Number
"Name of Person who Created the Object

"Starting city
"Shipment route

GT_SHIPS type ty_ships. -> has been populated as follows:

We want to populate internal table GT_CITYS with the cities from GT_SHIPS.

Before ABAP 7.4

DATA: gt_citys TYPE ty_citys,
 gs_ship TYPE ty_ship,
 gs_city TYPE ort01.

LOOP AT gt_ships INTO gs_ship.
 gs_city = gs_ship-city.
 APPEND gs_city TO gt_citys.
ENDLOOP.

https://itpfed.com/features-abap-74-declaring-creating-variables/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Declaring and Creating Variables

With ABAP 7.4

DATA(gt_citys) = VALUE ty_citys(FOR ls_ship IN gt_ships (ls_ship-city)).

OK, now lets throw some conditional logic into the mix. The goal now is to
populate internal table GT_CITYS with the cities from GT_SHIPS where the
route is R0001.

Before ABAP 7.4

DATA: gt_citys TYPE ty_citys,
 gs_ship TYPE ty_ship,
 gs_city TYPE ort01.

LOOP AT gt_ships INTO gs_ship WHERE route = 'R0001'.
 gs_city = gs_ship-city.
 APPEND gs_city TO gt_citys.
ENDLOOP.

With ABAP 7.4

DATA(gt_citys) = VALUE ty_citys(FOR ls_ship IN gt_ships
 WHERE (route = 'R0001') (ls_ship-city)).

https://itpfed.com/features-abap-74-declaring-creating-variables/

New Features in ABAP 7.4

New Features in ABAP 7.4 – String Processing

Working with Strings in ABAP 7.4

SAP has added some interesting new String Functions in the ABAP 7.2. In
some cases the new functions replace previous ABAP commands, and in
other cases they bring some completely new functionality. Lets take a closer
look…

Here are some of the more important changes to string processing in ABAP
7.2 and ABAP 7.4:

» Chaining Operator: chain two character-like operands into one new
character string.

» String Templates: the option to create a character string out of literal texts,
expressions, and control characters.

» Character String Functions: built-in functions

Using the Chaining Operator in ABAP 7.4

The Chaining Operator && can be used to create one character string out of
multiple other strings and literals. The use of the chaining operator largely
replaces the CONCATENATE statement. In this example, three variables are
concatenated together using the && chaining operator.

: v_var1 char30,
 v_var2 char30,
 v_var3 char30.

: lv_result .

v_var1 = .
v_var2 = .
v_var3 = .

lv_result = v_var1 && v_var2 && v_var3.

: / , lv_result

DATA TYPE
TYPE
TYPE

DATA TYPE string

'Building'
'A'
'String'

WRITE (30) 'Using &&'

Using String Templates in ABAP 7.4

https://itpfed.com/features-abap-74-string-processing/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-string-processing%2F&text=Working+with+Strings+in+ABAP+7.4
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-string-processing%2F&text=Using+the+Chaining+Operator+in+ABAP+7.4
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-string-processing%2F&text=Using+String+Templates+in+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – String Processing

A string template is de�ned by using the | (pipe) symbol at the beginning
and end of a template.

: / character_string.

DATA: character_string TYPE string.
character_string = |This is a literal text.|.
WRITE (30)

The added value of a string template becomes clear when combining literal
texts with embedded expressions and control characters. Embedded
expressions are de�ned within a string template with curly brackets

. Note that a space between bracket and expression is
obligatory. Some examples are:

{
expression }

character_string = |{ a_numeric_variable }|.
character_string = |This resulted in return code { sy-subrc }|.

Best of all, you can pass such constructs (the text between the starting | and
the ending |) into parameters of method calls that are expecting strings.
Previously, we had to create the string in a local variable and then use the
local variable in the method call.

LO_OBJECT->STRING2XML(|{ converted_xml }{ xml_row-row_close_tag }|).

Using Embedded Expressions in ABAP 7.2

and ABAP 7.4

In ABAP 7.2, the ALPHA formatting option was introduced and completely
replaces the two function modules CONVERSION_EXIT_ALPHA_INPUT and
CONVERSION_EXIT_ALPHA_OUTPUT. Now you can add or remove leading
zeroes with this one .

Below is the syntax for the ALPHA Embedded Expressions.

ALPHA = IN|OUT|RAW|(val)]

https://itpfed.com/features-abap-74-string-processing/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-string-processing%2F&text=Using+Embedded+Expressions+in+ABAP+7.2+and+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – String Processing

The parameter IN can be used to transform numeric sequences without
leading zeroes to the format of numeric text with leading zeroes. The
parameter OUT can be used to convert numeric text with leading zeroes to
numeric sequences without leading zeroes. RAW is no formatting, and the
possibilities of (val) are de�ned as constants in the class CL_ABAP_FORMAT.
Lets look at an example…

DATA: ld_message TYPE string.
DATA: ld_delivery_number TYPE vbeln_vl VALUE '0080003371'.
DATA: ls_delivery_header TYPE likp.

ld_message = |{ ld_delivery_number ALPHA = OUT }|.
WRITE: / ld_message.

BREAK-POINT.

SELECT *
 FROM likp
 INTO CORRESPONDING FIELDS OF ls_delivery_header
 WHERE vbeln = ld_delivery_number.
ENDSELECT.

If we run this in the debugger, we can see that we no longer have to add the
leading zeroes back—as they were never actually removed from the delivery
variable in the �rst place.

There are more Embedded Expressions than ALPHA in ABAP 7.2 and ABAP
7.4. I would recommend checking out the ABAP help , but here are a few
more…

https://itpfed.com/features-abap-74-string-processing/

New Features in ABAP 7.4

New Features in ABAP 7.4 – String Processing

 [WIDTH = len]
 [ALIGN = LEFT|RIGHT|CENTER|(val)]
 [PAD = c]
 [CASE = RAW|UPPER|LOWER|(val)]
 [SIGN = LEFT|LEFTPLUS|LEFTSPACE|RIGHT|RIGHTPLUS|RIGHTSPACE|(val)]
 [EXPONENT = exp]
 [DECIMALS = dec]
 [ZERO = YES|NO|(val)]
 [XSD = YES|NO|(val)]
 [STYLE = SIMPLE|SIGN_AS_POSTFIX|SCALE_PRESERVING
 |SCIENTIFIC|SCIENTIFIC_WITH_LEADING_ZERO
 |SCALE_PRESERVING_SCIENTIFIC|ENGINEERING
 |(val)]
 [CURRENCY = cur]
 [NUMBER = RAW|USER|ENVIRONMENT|(val)]
 [DATE = RAW|ISO|USER|ENVIRONMENT|(val)]
 [TIME = RAW|ISO|USER|ENVIRONMENT|(val)]
 [TIMESTAMP = SPACE|ISO|USER|ENVIRONMENT|(val)]
 [TIMEZONE = tz]
 [COUNTRY = cty] ...

https://itpfed.com/features-abap-74-string-processing/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Calling Methods and Functions

Calling Methods and Functions in ABAP 7.4

This chapter will discuss the new ABAP 7.4 functionalities that make calling
functions and methods easier to code and easier to read. lets start with
METHOD CHAINING.

Using Method Chaining in ABAP 7.4

You can now directly pass the returning value of one method call to a next
method call without using any intermediate local variable. This is referred to
as Previously, we were only allowed to create a chain of
statements using attributes of the class. Now you can include methods as
well as attributes in a chained call. Method chaining is available since ABAP
Release 7.0 EhP2.

Method Chaining.

Don’t get it confused with the chained statements, which You write
using colon symbol colon symbol (:) .

We can directly pass the result of one method into the input parameter of
another method without the need for an intermediate variable. Normally, we
would declare a variable, �ll it with the result of a method call, and pass that
variable into another method. When using this new feature, we are able to
reduce the amount of intermediate variables. This should improve code
readability. Lets take an example.

CATCH zcx_exception INTO lo_exception.
lv_error_txt = lo_exception->get_error_msg().
zcl_my_screen_message=>display(im_error = lv_error_txt).

By using , we can do away with having to declare the
lv_error_txt variable by chaining the two method calls together.

Method Chaining

CATCH zcx_exception INTO lo_exception.
zcl_my_screen_message=>display(im_error = lo_exception->get_error_msg()).

https://itpfed.com/new-features-in-abap-7-4-calling-methods-and-functions/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Calling Methods and Functions

Avoiding TYPE MISMATCH Errors in ABAP

7.4

We have all been there… you are developing an SAP ABAP program and you
declare some local variables to be passed into a method, cross your �ngers,
and hope you have declared the variable the same as the input parameter. If
not, you get an error. Worse, if it was a function module, you get a short
dump. Well ABAP 7.4 can address at least the IMPORT side of the problem,
using the new DATA TYPE declaration operator DATA(…).

Lets take an example…

DATA: ld_number_of_items TYPE i,
 ld_po_number TYPE ebeln.

lo_purorder=>get_items(EXPORTING id_po_number = ld_po_number
 IMPORTING ed_number_of_items = ld_number_of_items).

With ABAP 7.4, we can accomplish the same thing by declaring the variables
returned from the method but instead, at
the instant they have their values �lled by the method. Like so…

not at the start of the routine

lo_purorder=>get_items(EXPORTING id_po_number = ld_po_number
 IMPORTING ed_number_of_items = DATA(ld_number_of_items)).

What are the advantages of using this feature?
-> You cannot possibly get a type mismatch error or dump.
-> If you change the method signature de�nition or formal parameter type
of a function module, then the code adapts itself accordingly, again avoiding
the type mismatch.

Therefore, this coding approach is easier to maintain, and safer. This
approach really starts to make sense when creating ABAP object instances
using factory methods; let me show you what I mean…

Here is some ABAP code to create a Mercedes Benz subclass .

https://itpfed.com/new-features-in-abap-7-4-calling-methods-and-functions/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Calling Methods and Functions

DATA: lo_vehicle TYPE REF TO zcl_mercedes_benz.
lo_vehicle = zcl_car_factory=>build_new_car().

Now instead of using the TYPE REF to decide what subclass lo_vehicle
should be, let’s let the Factory Method Decide the Exact Subclass.

DATA(lo_vehicle) = zcl_car_factory=>build_new_car().

Constructor Operators in ABAP 7.4

What is a ? Well the SAP de�nition is “A constructor
expression consists of a prede�ned constructor operator, a data type or
object type that matches the operator and that can be derived implicitly
from the operand position using #, and type-speci�ed parameters speci�ed
in parentheses. Each constructor expression creates a result whose data
type is determined using the speci�ed type. The parameters speci�ed in
parentheses are used to pass input values”.

Constructor Operator

With this is mind, lets take a look at a speci�c situation – Often the result of
one FORM, METHOD, or FUNCTION has to have its type converted before it
can be passed into another FORM, METHOD, or FUNCTION. Lets take an
example where we need to pass a name to the get_as_string method. We
have a �eld im_delivery that is type vbeln_vl yet a string is expected. CONV #
takes car of the conversion in-line. We can use the # character as a symbol
for the operand type because data type required in an operand position is
unique and fully identi�able. If it wasn’t then we would need to specify a
non-generic data type.

lcl_text_reader()->get_as_string(id = '0002'
 name = conv #(im_delivery)
 object = 'VBBK').

There a more Constructor Operators that just CONV, take a look at the
 for more information.

SAP
ABAP 7.4 help

https://itpfed.com/new-features-in-abap-7-4-calling-methods-and-functions/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Fnew-features-in-abap-7-4-calling-methods-and-functions%2F&text=Constructor+Operators+in+ABAP+7.4
https://help.sap.com/abapdocu_740/en/abenconstructor_expressions.htm

New Features in ABAP 7.4

New Features in ABAP 7.4 – Conditional Logic

Conditional Logic in ABAP 7.4

The continuing theme in all of these posts, is how we can make our code
thinner, more readable and transparent. Well, nothing clogs up the visual
readability of your code like long IF-THEN-ELSE-ENDIF or CASE-WHEN-
ENDCASE constructs. Well, in ABAP 7.4 we have some new

 we can use in that will make our code
easier to read, more compact, and safer to maintain.

Constructor
Operators Constructor Expressions

You remember … We discussed them in the last blog
post In That post
we highlighted the CONV and how we could use it to
convert a local variable to a STRING. In this post, I’d like to talk about the
Constructor Operators COND and SWITCH. Again, for a complete list see the

 for more information.

Constructor Operators
New Features in ABAP 7.4 – Calling Methods and Functions.

Constructor Operator

SAP ABAP 7.4 help

Using COND as a Replacement for IF/ELSE

in ABAP 7.4

Since CASE statements can only evaluate one variable at a time, we use the
IF/ELSE construct when we need to check multiple conditions. Look at the
example below…

DATA: lv_text(30).

IF lv_vehicle = '01' AND lv_type = 'C'.
 lv_text = 'Toyota'.
ELSE.
IF lv_vehicle ='02' AND lv_type = 'C'.
 lv_text = 'Chevy'
ELSE.
IF lv_vehicle ='03' AND lv_type = 'C'.
 lv_text = 'Range Rover'.

 ..
ENDIF.

https://itpfed.com/features-abap-74-conditional-logic/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-conditional-logic%2F&text=Conditional+Logic+in+ABAP+7.4
https://itpfed.com/blog/2016/07/18/new-features-in-abap-7-4-calling-methods-and-functions/
https://help.sap.com/abapdocu_740/en/abenconstructor_expressions.htm
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-conditional-logic%2F&text=Using+COND+as+a+Replacement+for+IF%2FELSE+in+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – Conditional Logic

In ABAP 7.4, you can achieve the same thing, but you can do this in a more
economical way by using the COND constructor operator. This also means
that you do not have to keep specifying the target variable again and again.
We will also add an ABAP inline declaration by using the DATA statement to
create the variable lv_text inline on the �y!

DATA(lv_text) = COND text30(
 WHEN lv_vehicle ='01' AND lv_type = 'C' THEN 'Toyota'
 WHEN lv_vehicle ='02' AND lv_type = 'C' THEN 'Chevy'
 WHEN lv_vehicle ='03' AND lv_type = 'C' THEN 'Range Rover').

Using SWITCH a Replacement for CASE in

ABAP 7.4

Here, we’re getting the day of the week and using a CASE statement to turn
the number into a string, such as “Monday”, to output at the top of a report.

data: l_indicator like scal-indicator,
 l_day(10) type c.

call function 'DATE_COMPUTE_DAY'
 exporting
 date = p_date
 importing
 day = l_indicator.

case l_indicator.
 when 1.
 l_day = 'Monday'.
 when 2.
 l_day = 'Tuesday'.
 when 3.
 l_day = 'Wednesday'.
 when 4.
 l_day = 'Thursday'.
 when 5.
 l_day = 'Friday'.
 when 6.
 l_day = 'Saturday'.
 when 7.
 l_day = 'Sunday'.
else.
 Raise exception type zcx_day_problem.
endcase.

https://itpfed.com/features-abap-74-conditional-logic/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Conditional Logic

With ABAP 7.4, we can simplify and accomplish the same thing by by using
the new SWITCH constructor operator instead of the CASE sttatement. Like
so…

DATA(L_DAY) = SWITCH char10(l_indicator
 when 1 THEN 'Monday'
 when 2 THEN 'Tuesday'
 when 3 THEN 'Wednesday'
 when 4 THEN 'Thursday'
 when 5 THEN 'Friday'
 when 6 THEN 'Saturday'
 when 7 THEN 'Sunday'
 ELSE THROW zcx_day_problem()).

Also note that if you are tired of only catching exceptions you can throw
exceptions now! The usage is identical to the RAISE EXCEPTION TYPE,
however, the compiler evaluates the keywords RAISE EXCEPTION TYPE and
THROW as if they were one and the same.

https://itpfed.com/features-abap-74-conditional-logic/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Conditional Logic

Using Predictive Method Calls in ABAP 7.4

For quite some time the lack of a real Boolean type in ABAP led to a lot of
discussions amongst developers. I would see post on the SCN community
constantly asking why a developer couldn’t write..

IF meth(…).
 …
ENDIF.

The answer from SAP was always “Because you have to have a Boolean type
behind IF and no method can return a Boolean type.” But, now in Release
7.40, SP08 You can write predicative method calls as shown below..

… meth() …

as a short form of the relational expression

… meth() IS NOT INITIAL …

So you can place simple functional method calls everywhere, where logical
expressions are allowed: behind IF, CHECK, ASSERT, COND, SWITCH, … Here
is an example…

IF zcl_system=>is_production().
"In production we never want a short dump
 TRY.
 zcl_application=>main().
 CATCH cx_sy_no_handler INTO gcl_no_handler.
 ENDTRY.

The reason this works is spelled out completely in Paul Hardy’s Book
. Paul explains, “What’s happening from a technical point of view

is that if you don’t specify anything after a functional method the compiler
evaluates it as IS_PRODUCTION() IS NOT INITIAL. An ABAP_TRUE value is
really the letter X, so the result is not initial, and so the statement is resolved
as true.”

ABAP to
The Future

https://itpfed.com/features-abap-74-conditional-logic/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Ffeatures-abap-74-conditional-logic%2F&text=Using+Predictive+Method+Calls+in+ABAP+7.4
https://www.sap-press.com/abap-to-the-future_4161/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Conditional Logic

To learn more about Predictive Methods and Predicate methods, take a look
at this and then check out .Documentation Horst Keller’s Blog

Using the New Boolean Function XSDBOOL

in ABAP 7.4

Another common situation with respect to Boolean logic in ABAP, is when
you want to send a TRUE/FALSE value to a method or get such a value back
from a functional method. For instance, did you ever stumble over this one?

IF boolc(1 = 2) = ABAP_FALSE.
 WRITE: / 'YES'.
ELSE.
 WRITE: / 'NO'.
ENDIF.

Guess what? The relational expression “boolc(1 = 2) = ABAP_FALSE” is false!
Why? Because BOOLC despite its name does not return c but a string and
the comparison rules for c and string blah, blah, blah …

Technically BOOLC(1 = 2) evaluates to a string containing a blank of length 1.
So far so good. But comparing ` ` with ‘ ‘ or ABAP_FALSE is false, since the
text �eld is converted to string resulting in an empty string.

Now in ABAP 7.4, a new built-in function was added, called XSDBOOL, which
does the same thing as BOOLC but returns an ABAP_BOOL type parameter.

IF xsdbool(1 = 2) = ABAP_FALSE.
 WRITE: / 'YES'.
ELSE.
 WRITE: / 'NO'.
ENDIF.

The relational expression xsdbool(1 = 2) = abap_false is true, because xsdbool
returns type XSDBOOLEAN from the ABAP Dictionary that is – yes, you guess
it – c of length 1. For the experts among you, XSDBOOLEAN is normally used
for special mappings in XML-transformations and was reused here for quite
another purpose. And that’s were the funny name xsdbool comes
from. Again, I highly recommend reading on all the ABAP
7.4 enchantments to the code base.

 Horst Keller’s Blog

https://itpfed.com/features-abap-74-conditional-logic/
http://help.sap.com/abapdocu_740/en/index.htm?file=ABENpredicative_method_call_abexa.htm
https://blogs.sap.com/2014/09/29/abap-news-for-740-sp08-logical-expressions/
http://help.sap.com/abapdocu_740/en/index.htm?file=ABENlogexp_character.htm
https://blogs.sap.com/2013/07/22/abap-news-for-release-740/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Internal Tables

Using Secondary Keys to Access Internal

Tables in ABAP 7.4

All of us who have been developing in ABAP at one time or another have
created a custom index on a database table. Why do we create a custom
index or z-index? For performance… we recognize that a table could be
queried in more ways then just by the primary key, so we setup customer
indexes that we believe will be used by the Database Optimizer when
determining the access path and thus make the query performant.

OK, back to internal tables, traditionally, if you wanted to read an internal
table in two different ways (e.g.,looking for a material by Material Number or
by Reference Number), then you either had to keep sorting the table just
before a read, or have two identical tables sorted differently. Well now as of
ABAP 7.2 can declare secondary keys for internal tables. The states
that using the secondary key could increases read access performance
signi�cantly. But, on the other hand, secondary keys also incur additional
administration costs due to memory consumption and run-time.

SAP Help

For example, lets create a secondary index into the internal table IT_MARA
for the column BISMT , this is just like having a secondary Z- index on BISMT
in the database table de�nition. The internal table de�nition could be as
shown below.

DATA: IT_MARA TYPE HASHED TABLE OF mara
 WITH UNIQUE KEY matnr
 WITH NON-UNIQUE SORTED KEY sort_key COMPONENTS bismt.

The states that statements that previously only accessed the
primary key have been enhanced so that access to secondary keys is now
possible. Check out the help for a full list, but we will look at the READ TABLE
statement here.

SAP Help

The code would look something like the below…

READ TABLE it_mara INTO wa_mara WITH KEY sort_key COMPONENTS bismt = lv_bismt.

https://itpfed.com/new-features-in-abap-7-4-internal-tables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Fnew-features-in-abap-7-4-internal-tables%2F&text=Using+Secondary+Keys+to+Access+Internal+Tables+in+ABAP+7.4
https://help.sap.com/abapdocu_731/en/abensecondary_key_guidl.htm
https://help.sap.com/abapdocu_750/en/abennews-71-itab.htm#!ABAP_MODIFICATION_3@3@

New Features in ABAP 7.4

New Features in ABAP 7.4 – Internal Tables

Even though IT_MARA is a HASHED table, it is also a SORTED table with the
key BISMT, so when we go looking for the record using BISMT a BINARY
SEARCH is automatically performed.

Declaring Table Work Areas in ABAP 7.4

In release ABAP 7.4, the syntax for reading into a work area and looping
through a table can now leverage INLINE DECLARATIONS, we discussed
these in a prior ABAP 7.4 blog.

We learned that from 7.4 onward you no longer need to do a DATA
declaration for elementary data types. It is exactly the same for the work
areas, which are of course structures. Take a gander at the code below…

READ TABLE lt_mara WITH KEY matnr = lv_matnr INTO DATA(ls_mara).
LOOP AT lt_mara INTO DATA(ls_mara).

In the same way that you no longer need DATA declarations for table work
areas, you also no longer need FIELD-SYMBOL declarations for the (common)
situations in which you want to change the data in the work area while
looping through an internal table. In ABAP 7.4, if you want to use �eld
symbols for the work area, then the syntax is shown below…

READ TABLE lt_mara WITH KEY matnr = lv_matnr ASSIGNING FIELD-SYMBOL().
LOOP AT lt_mara ASSIGNING FIELD-SYMBOL().

https://itpfed.com/new-features-in-abap-7-4-internal-tables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Fnew-features-in-abap-7-4-internal-tables%2F&text=Declaring+Table+Work+Areas+in+ABAP+7.4
https://itpfed.com/blog/2016/05/15/features-abap-74-declaring-creating-variables/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Internal Tables

Table Expressions in ABAP 7.4

What if I told you that you would never have to use the statement READ
TABLE again to get a line out of an internal table?

That is exactly what happens in ABAP 7.4. Through the use of Table
Expressions, a new way for accessing table lines in operand positions. We can
view a table expression simply as a short form of a READ TABLE statement.
The syntax for using a table expression consists of an internal table, followed
by a row speci�ed in square brackets [].

lets look at some code…

PRIOR to ABAP 7.4

READ TABLE �ight_schedules INTO DATA(�ight_schedule)
 WITH KEY carrid = 'AA'
 connid = '0017'.

lo_mara = zcl_mara_factory(ls_mara-matnr).

ABAP 7.4

DATA(�ight_schedule) = �ight_schedules[carrid = 'AA' connid = '0017'].

lo_mara = zcl_mara_factory(lt_mara[matnr = lv_matnr]-matnr).

The result of a table expression is a single table line. If a table line is not
found, the exception CX_SY_ITAB_LINE_NOT_FOUND is raised. One way
around this is to use the built-in table functions provided by SAP. One of
them is the line_exists(…), which we can think as the short form of the READ
TABLE … TRANSPORTING NO FIELDS statement. First, we check the
existence of the speci�ed row, and if it exists, then we perform the table
read.

IF line_exists(vendors[id = '00AED']).
 vendors[id = '00AED'].
ENDIF.

https://itpfed.com/new-features-in-abap-7-4-internal-tables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Fnew-features-in-abap-7-4-internal-tables%2F&text=Table+Expressions+in+ABAP+7.4

New Features in ABAP 7.4

New Features in ABAP 7.4 – Internal Tables

From 7.40, SP08 on, we are able to de�ne default values for avoiding the
mentioned exception above. So, if the speci�ed row is not found, then it
returns the default value back.

DATA(default_customer) = VALUE customer(id = '00000' name = 'not found' ...).

DATA(lv_customer) = VALUE #(customers[id = '00024'] DEFAULT default_customer).

CORRESPONDING Constructor Operator in

ABAP 7.4

The new constructor operator CORRESPONDING allows to execute a
“MOVE-CORRESPONDING” for structures or internal tables at operand
positions. Besides the automatic assigning components of the same name,
you can also de�ne your own mapping rules! This is best explained by using
an example… We have have 2 internal tables LT_MARA_SOURCE and
LT_MARA_TARGET. (1) You do not want to copy the MATKL value from one
table to the other, even though both tables have a MATKL column. (2) You
want to copy the column named KUNNR from one table into a similar
column called CUSTOMER in the second table. We code use the code below,
with the mapping rules de�ned…

lt_mara_source = CORRESPONDING #(lt_mara_target MAPPING customer = kunnr EXCEPT matkl).

Here is the link to the .SAP help

https://itpfed.com/new-features-in-abap-7-4-internal-tables/
http://help.sap.com/abapdocu_740/en/index.htm?file=abenconstructor_expr_corresponding.htm

New Features in ABAP 7.4

New Features in ABAP 7.4 – Internal Tables

MOVE-CORRESPONDING for Internal

Tables

You can use MOVE-CORRESPONDING not only for structures but also for
internal tables in ABAP 7.4. Components of the same name are are assigned
row by row. New statement additions EXPANDING NESTED TABLES and
KEEPING TARGET LINES allow to resolve tabular components of deep
structures and to append lines instead of overwriting existing lines.

MOVE-CORRESPONDING itab_source TO itab_target EXPANDING NESTED TABLES
 KEEPING TARGET LINES.

I want to once again recommend that you grab a copy of Paul Hardy’s book
. He has done an excellent job explaining this speci�c

concept in language developers can easily relate. Here is a link to the
. (Not quite as easy on the eyes as Paul’s book ;-))

ABAP to The Future
SAP

help

Using The Constructor Operator FILTER in

ABAP 7.4

The �lter operator does what its name suggests it �lters the content of an
internal table. As a prerequisite, the �ltered table must have a sorted or a
hash key (primary or secondary), that is evaluated behind the WHERE
clause.

DATA(lt_materials_fert) = FILTER #(lt_all_materials USING KEY mtart WHERE mtart = 'FERT').

You can get quite fancy by adding some of the additional variants like
EXCEPT and (ITAB ….IN …..ITAB) which behaves much like the FOR ALL
ENTRIES does on the Database. Take a look at the for a more
complete understanding.

SAP help

https://itpfed.com/new-features-in-abap-7-4-internal-tables/
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Fnew-features-in-abap-7-4-internal-tables%2F&text=MOVE-CORRESPONDING+for+Internal+Tables
https://www.sap-press.com/abap-to-the-future_4161/
http://help.sap.com/abapdocu_740/en/index.htm?file=abapmove-corresponding.htm
http://twitter.com/share?url=https%3A%2F%2Fitpfed.com%2Fnew-features-in-abap-7-4-internal-tables%2F&text=Using+The+Constructor+Operator+FILTER+in+ABAP+7.4
https://help.sap.com/abapdocu_740/en/abenconstructor_expression_filter.htm#!ABAP_VARIANT_2@2@

New Features in ABAP 7.4

New Features in ABAP 7.4 – Internal Tables

Predicate Functions for Internal Tables in

ABAP 7.4

A is predictive of a result. With ABAP 7.4 we have new
built-in functions LINE_EXISTS and LINE_INDEX that �t this description for
internal tables. Earlier in this blog I gave you an example of using
LINE_EXISTS. Lets take a look at it again. We can think of using LINE_EXISTS
as the short form of the READ TABLE … TRANSPORTING NO FIELDS
statement. First, we check the existence of the speci�ed row, and if it exists,
then we perform the table read.

predicate function

IF line_exists(vendors[id = '00AED']).
 vendors[id = '00AED'].
ENDIF.

Here is the for LINE_EXISTS. Another is
LINE_INDEX. In ABAP 7.4 release, we have new syntax LINE_INDEX() to
identify the index of a row when a condition is met while reading the
internal table. The new syntax is similar to READ TABLE with TRANSPORTING
NO FIELDS followed by sy-subrc check. if sy-subrc = 0, then sy-tabix will give
the index of the row.

SAP Help predicate function

READ TABLE it_schedule TRANSPORTING NO FIELDS
 WITH KEY carrid = 'US'
 connid = '24'.
IF sy-subrc = 0.
 WRITE: sy-tabix. "index
ENDIF.

Here is the for LINE_INDEX.SAP Help

https://itpfed.com/new-features-in-abap-7-4-internal-tables/
https://help.sap.com/abapdocu_740/en/abenline_exists_function.htm
https://help.sap.com/abapdocu_740/en/abenline_index_function.htm

New Features in ABAP 7.4

New Features in ABAP 7.4 – Enhanced Search Helps

Search Helps in ABAP 7.4

At some point in your ABAP career, you probably will develop a search help
for a screen �eld to aid the user in entering correct data. In the “Classic” days
(Everything old in SAP is Classic) these were called Match Codes.This blog
post is not a tutorial on how to create a search help, please see the

 for that. Instead, I am going to introduce you to some new
functionality that became available in ABAP 7.4.

SAP
ABAP 7.4 help

First, let’s quickly review what a search help is…

A Search Help, a repository object of ABAP Dictionary, is used to display all
the possible values for a �eld in the form of a list. This list is also known as a
hit list. You can select the values that are to be entered in the �elds from this
hit list instead of manually entering the value, which is tedious and error
prone.

There are several types of Search helps:
 This type implements a search path for

determining the possible entries.
 This type contains several elementary search helps.

A collective search help, therefore, provides several alternative search paths
for possible entries.

 This type can be used to enhance collective search
helps delivered by SAP with customer-speci�c search paths without
requiring a modi�cation.

Elementary search helps:

Collective search helps:

Append search helps:

An example of an elementary search help is shown below. You will see the
icon next to the �eld. You enter a pattern and hit this icon or F4 and the hit
list is displayed for you to choose from. (see below).

https://itpfed.com/new-features-in-abap-7-4-enhanced-search-helps/
https://help.sap.com/saphelp_nw74/helpdata/en/cf/21ee2b446011d189700000e8322d00/content.htm?frameset=/en/cf/21ee5f446011d189700000e8322d00/frameset.htm¤t_toc=/en/4f/991f82446d11d189700000e8322d00/plain.htm&node_id=54&show_children=false

New Features in ABAP 7.4

New Features in ABAP 7.4 – Enhanced Search Helps

So you want to �nd a book on ABAP, so you head over to your favorite
browser and using Google start typing in ABAP and instantly you see search
results. (see below)

https://itpfed.com/new-features-in-abap-7-4-enhanced-search-helps/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Enhanced Search Helps

What if this “type ahead” (Predictive) or “search engine like” functionality
could be used in our ABAP 7.4 Search helps?

Well, the good news is it can. You need to be on SAP NetWeaver 7.4 SP06,
and SAP GUI 7.30 for Windows Patch Level 5, SAP recommends Patch Level 6
or higher. You can use this on ABAP 7.4 SP05, but you will need to add a PBO
section in your DYNPRO to call class
CL_DSH_DYNPRO_PROPERTIES=>enable_type_ahead.

At the end of this chapter, I will add a link to a SAP video that explains this
and much more in detail. For this blog, I am on the correct support pack and
GUI, so this will all be done with any coding changes.

First, let’s look at the code that invokes the Search help. As you can see, this
program is a simple one line PARAMETER statement that invokes
MATCHCODE OBJECT zsh.

https://itpfed.com/new-features-in-abap-7-4-enhanced-search-helps/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Enhanced Search Helps

Next, let’s double-click on the Search Help zsh in order to enter transaction
Se11 and make the changes. Once you are there, please notice a new section
called ENHANCED OPTIONS. In this section, you will see a checkbox for
“proposal Search for Input Fields”. This is what will allow the type-ahead – aka
search-as-you-type – function. Checking this box allows a faster, search
engine-like user interaction by showing possible search results from the
standard F4 help already in a down box beneath the search �eld. This
option is Database Agnostic, so you Do NOT need HANA for this.

https://itpfed.com/new-features-in-abap-7-4-enhanced-search-helps/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Enhanced Search Helps

OK, now let’s activate the changes and test the demo program again. As you
see if I begin to enter a number, like 4, I immediately start seeing results.

https://itpfed.com/new-features-in-abap-7-4-enhanced-search-helps/

New Features in ABAP 7.4

New Features in ABAP 7.4 – Enhanced Search Helps – ITPFED

In addition to this “type-ahead” option in the new Enhanced Section of the
Search Help, there is the” Fuzzy Search” option. This allows a fault-tolerant,
cross-column full-text search. This option doesn’t work on all databases
currently – But it does on SAP HANA. An accuracy value can be speci�ed for
the error tolerance of the full-text search.

Here is the video I promised.

https://itpfed.com/new-features-in-abap-7-4-enhanced-search-helps/
https://youtu.be/JpcclYR4wmg

New Features in ABAP 7.4

Anthony Cecchini is the President and CTO of Information
Technology Partners (ITP), an ERP technology consulting
company headquartered now in Virginia, with of�ces in
Herndon. ITP offers comprehensive planning, resource
allocation, implementation, upgrade, and training
assistance to companies. Anthony has over 20 years of
experience in SAP business process analysis and SAP
systems integration. ITP is an Appian, Pegasystems, and
UIPath Low-code and RPA Value Added Service Partner.
You can reach him at ajcecchini@itpfed.com.

mailto:ajcecchini@itpfed.com

